HOME RESEARCH PUBLICATION MEMBER RECRUITMENT GALLERY LINK CONTACT
Enomoto Y, Katsura H, Fujimura T, Ogata A, Baba S, Yamaoka A, Kihara M, Abe T, Nishimura O, Kadota M, Hazama D, Tanaka Y, Maniwa Y, Nagano T, Morimoto M.
Autocrine TGF-β-positive feedback in profibrotic AT2-lineage cells plays a crucial role in non-inflammatory lung fibrogenesis
Nature Communications 14, Article number: 4956 (2023)
[Nature Communications] [理研ニュース]
Fujimura T, Enomoto Y, Katsura H, Ogawa T, Baba S,, Ogata A, Yamaoka A, Shiroguchi K, Morimoto M.
Identifying a Lung Stem Cell Subpopulation by Combining Single-Cell Morphometrics, Organoid Culture, and Transcriptomics
Stem Cells 41(8)(2023)
[Stem Cells] [理研ニュース]
Kishimoto K, Iwasawa K, Sorel A, Ferran-Heredia C, Han L, Morimoto M, Wells JM, Takebe T, Zorn AM*.
Mammalian tracheal development and reconstruction: insights from in vivo and in vitro studies.
Nature Protocols 17(11) (2022)
[Nature Protocols] [理研ニュース]
Kishimoto K and Morimoto M*.
Mammalian tracheal development and reconstruction: insights from in vivo and in vitro studies.
Development 148: 13 (2021)
[PubMed] [Development]
Kiyokawa H and Morimoto M*.
Molecular crosstalk in tracheal development and its recurrence in adult tissue regeneration.
Developmental Dynamics (2021)
[PubMed] [Dev. Dyn.]
Kiyokawa H, Yamaoka A, Matsuoka C, Tokuhara T, Abe T, Morimoto M*.
Airway basal stem cells reutilize the embryonicproliferation regulator, Tgfb-Id2 axis, for tissue regeneration.
Developmental Cell vol. 56 (2021)
[Dev. Cell] [理研ニュース]
Kishimoto K, Furukawa KT, Luz-Madrigal A, Yamaoka A, Matsuoka C, Habu M, Alev C, Zorn AM, Morimoto M*.
Bidirectional Wnt signaling between endoderm and mesoderm confers tracheal identity in mouse and human cells.
Nature Communications vol. 11: 4159 (2020)
[PubMed] [Nat. Comm.] [理研ニュース]
Han L#, Chaturvedi P#, Kishimoto K#, Koike H, Nasr T, Iwasawa K, Giesbrecht K, Witcher PC, Eicher A, Haines L, Lee Y, Shannon JM, Morimoto M, Wells JM, Takebe T, Zorn AM*. (#Equally contributed)
Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis.
Nature Communications vol. 11: 4158 (2020)
[PubMed] [Nat. Comm.]
Kiyokawa H, Morimoto M*.
Notch signaling in the mammalian respiratory system, specifically the trachea and lungs, in development, homeostasis, regeneration, and disease.
Dev. Growth Differ. (2019)
[PubMed]
[Dev. Growth Differ.]
Kishimoto K, Tamura M, Nishita M, Minami Y, Yamaoka A, Abe T, Shigeta M, Morimoto M*.
Synchronized mesenchymal cell polarization and differentiation shape the formation of the murine trachea and esophagus.
Nature Communications vol. 9: 2816 (2018)
[PubMed] [Nat. Comm.] [理研ニュース]
Yin W, Kim HT, Wang SP, Gunawan F, Wang L, Kishimoto K, Zhong H, Roman D, Preussner J, Guenther S, Graef V, Buettner C, Grohmann B, Looso B, Morimoto M, Mardon G, Offermanns S, Stainier DYR*.
The potassium channel KCNJ13 is essential for smooth muscle cytoskeletal organization during mouse tracheal tubulogenesis.
Nature Communications vol. 9: 2815 (2018)
[PubMed] [Nat. Comm.]
Tsukiji N, Inoue O, Morimoto M, Tatsumi N, Nagatomo H, Ueta K, Shirai T, Sasaki T, Otake S, Tamura S, Tachibana T, Okabe M, Hirashima M, Ozaki Y, Suzuki-Inoue K*
Platelets play an essential role in murine lung development through Clec-2/podoplanin interaction.
Blood (2018)
[PubMed] [Blood]
Tsao P, Matsuoka C, Wei SC, Sato A, Sato S, Chena HK, Ling TY, Mori M, Cardoso WV, Morimoto M*
Epithelial Notch signaling regulates lung alveolar morphogenesis and airway epithelial integrity.
Proc. Natl. Acad. Sci. USA 113, 8242-7 (2016)
[PubMed] [PNAS] [CDBニュース]
Noguchi M, Sumiyama K, Morimoto M*
Directed migration of pulmonary neuroendocrine cells toward airway branches organizes the stereotypic location of neuroepithelial bodies.
Cell Reports 13. - (2015)
[PubMed] [Cell Reports] [CDBニュース][理研ニュース]
Liu Z, Brunskill E, Varnum-Finney B, Zhang C, Zhang A, Jay PY, Bernstein I, Morimoto M, Kopan R.
The intracellular domains of Notch1 and Notch2 are functionally equivalent during development and carcinogenesis.
Development 142, 2451-63 (2015)
[PubMed] [Development]
Okazawa M, Murashima A, Harada M, Nakagata N, Noguchi M, Morimoto M, Kimura T, Ornitz DM, Yamada G*
Region-specific regulation of cell proliferation by FGF receptor signaling during the Wolffian duct development.
Developmental Biology 400. 139-47 (2015)
[PubMed] [Developmental Biology]
The FANTOM consortium
Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells.
Science 347.1010-1014 (2015)
*気管上皮繊毛細胞分化の時系列トランスクリプトーム解析に参加。
[PubMed] [Science]
The FANTOM consortium
A promoter-level mammalian expression atlas.
Nature 507.462-470 (2014)
*初代培養の気管上皮繊毛細胞を使ったトランスクリプトーム解析に参加。
[PubMed] [Nature]
Morimoto M*, Nishinakamura R, Saga Y, Kopan R.
Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells.
Development 139.4365-73 (2012)
*Development誌のIN THIS ISSUEで紹介。
[PubMed] [Development] [pdf]
Morimoto M, Liu Z, Cheng HT, Winters N, Bader D, Kopan R*.
Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate.
J Cell Sci 123.213-24 (2010)
*Development誌のARTICLES OF INTEREST IN OTHER JOURNALSで紹介。
[PubMed] [J Cell Sci]
Demehri S, Morimoto M, Holtzman MJ, and Kopan R*.
Skin-derived TSLP triggers progression from epidermal-barrier defects to asthma.
PLoS Biol 7(5).e1000067 (2009)
[PubMed] [PLoS Biol]
Morimoto M and Kopan R*.
rtTA toxicity limits the usefulness of the SP-C-rtTA transgenic mouse.
Developmental Biology 325.171-8 (2009)
[PubMed] [Dev Biol]
Morimoto M, Sasaki N, Oginuma M, Kiso M, Igarashi K, Aizaki K, Kanno J, Saga Y*.
The negative regulation of Mesp2 by mouse Ripply2 is required to establish the rostro-caudal patterning within a somite.
Development 134.1561-9 (2007)
*Development 誌のIN THIS ISSUEで紹介。
[PubMed] [Development]
Morimoto M, Kiso M, Sasaki N, Saga Y*.
Cooperative Mesp activity is required for normal somitogenesis along the anterior-posterior axis.
Developmental Biology 300.687-98 (2006)
[PubMed] [Dev Biol]
Nakajima Y, Morimoto M, Takahashi Y, Koseki H, Saga Y*.
Identification of Epha4 enhancer required for segmental expression and the regulation by Mesp2.
Development 133.2517-25 (2006)
[PubMed] [Development]
Morimoto M,Takahashi Y, Endo M, Saga Y*.
The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity.
Nature 435.354-9 (2005)
[PubMed] [Nature]
Morimoto M, Nishida T, Nagayama Y, Yasuda H*.
Nedd8-modification of Cul1 is promoted by Roc1 as a Nedd8-E3 ligase and regulates its stability.
Biochem Biophys Res Commun 301.392-8 (2003)
[PubMed] [Biochem Biophys Res Commun]
Morimoto M, Nishida T, Honda R, Yasuda H*.
Modification of cullin-1 by ubiquitin-like protein Nedd8 enhances the activity of SCF(skp2) toward p27(kip1).
Biochem Biophys Res Commun 270.1093-6 (2000)
[PubMed] [Biochem Biophys Res Commun]
森本充
肺の組織幹細胞から考える肺疾患
「医学のあゆみ」科学評論社、医歯薬出版株式会社、Vol.283, 29 – 34、 2023年1月号
桂廣亮, 森本充
呼吸器再生の最前線 ~ここまで進んだ肺胞細胞の再生と疾患の理解~
「呼吸器内科」科学評論社、43巻 1号2023年1月
森本充
呼吸器の複雑性の理解と再構成 ―器官形成とオルガノイドー
「生体の科学;形態形成の統合的理解」医学書院、73巻 4号2022年7、8月号
清川寛文, 森本充
発生と再生に共通する組織幹細胞の増殖制御メカニズムTgfβ-Id軸の発見
「実験医学;カレントトピックス」羊土社、40巻 3号2022年2月
中山彰吾, 森本充
呼吸器発生の解明が導く気管・肺胞オルガノイド培養技術の開発
「実験医学;ヒト発生に挑むオルガノイド」羊土社、39巻 18号2021年11月
榎本泰典, 森本充
肺胞オルガノイド
「臨床免疫・アレルギー学」科学評論社、第76巻4号2021年11月
岸本圭史、森本充
第3章 組織幹細胞オルガノイド, 10. 呼吸器オルガノイド
「実験医学増刊号;オルガノイド実験スタンダード」羊土社、37巻 5号2019年3月
岸本圭史、森本充
平滑筋と軟骨による管腔臓器の長さと太さの段階的な調節
「実験医学;カレントトピックス」36巻18号2018年11月
野口雅史、森本充
臓器の多彩な細胞パターン形成を指揮するNotch
「実験医学;Notchシグナルの新世紀」34巻3号2016年2月
山本慎也、森本充
概論ーNotchシグナルの世界ー
「実験医学;Notchシグナルの新世紀」34巻3号2016年2月
森本 充
多様な気道上皮細胞とNotchシグナルによる分化制御
「呼吸と循環」62巻7号2014年7月
Mitsuru Morimoto
Building Functional Internal Organs from a Naive Endodermal Sheet
[New Principles in Developmental Processes], Part I-5, Springer社(2014)
森本 充
呼吸器の形態形成
『モデル動物利用マニュアル』、第ⅠⅠ部-第1章-第6節-第2項、株式会社エル・アイ・シー(2010)